p-adic approach to differential equations

Problem set 1

Amice ring

For every prime number p, the Amice ring is defined as follows

$$\mathcal{A}_p = \left\{ \sum_{n \in \mathbb{Z}} a_n t^n : a_n \in \mathbb{Q}_p, \lim_{n \to -\infty} |a_n|_p = 0 \text{ and } \sup_{n \in \mathbb{Z}} |a_n|_p < \infty \right\}.$$

For every $f = \sum_{n \in \mathbb{Z}} a_n t^n$, we set

$$|f|_{\mathcal{G}} = \sup_{n \in \mathbb{Z}} |a_n|_p.$$

(i) Prove that $||_{\mathcal{G}}$ is a norm. This norm is called the Gauss norm.

(ii) Prove that \mathcal{A}_p is complete with respect to the Gauss norm.

(iii) Prove that $\mathbb{Q}(t) \subset \mathcal{A}_p$ and show that

$$\left|\frac{\sum_{i} a_{i} t^{i}}{\sum_{j} b_{j} t^{j}}\right|_{\mathcal{G}} = \frac{\max_{i} |a_{i}|_{p}}{\max_{j} |b_{j}|_{p}}.$$

Conclude that $E_p \subset \mathcal{A}_p$, where E_p is the *p*-adic closure of $\mathbb{Q}(t)$ called the field of *p*-adic analytic elements.

- (iv) An element of $f = \sum_{n \in \mathbb{Z}} a_n t^n \in \mathcal{A}_p$ is invertible if and only if there is $n_0 \in \mathbb{Z}$ such that $|f|_{\mathcal{G}} = |a_{n_0}|$.
- (v) If $f = \sum_{n>0} a_n z^n \in \mathcal{A}_p$ has radius of convergence greater than 1 then $f \in E_p$.

Hypergeometric Frobenius structures

A generalized hypergeometric differential operator of order $n \ge 1$ is given by

$$L = (\theta + \beta_1 - 1)(\theta + \beta_2 - 1)\dots(\theta + \beta_n - 1) - t(\theta - \alpha_1)\dots(\theta - \alpha_n), \qquad \theta = t\frac{d}{dt}$$

with some complex numbers $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$. This is a Fuchsian operator with singularities at $0, 1, \infty$. The local exponents read

$$1 - \beta_1, \dots, 1 - \beta_n \quad \text{at} \quad t = 0,$$

$$\alpha_1, \dots, \alpha_n \quad \text{at} \quad t = \infty,$$

$$1, 2, \dots, n - 1, -1 + \sum_{i=1}^n (\beta_i - \alpha_i) \quad \text{at} \quad t = 1$$

The monodromy representation of L is known to be irreducible if and only if $\alpha_i - \beta_j \notin \mathbb{Z}$ for all i, j. In his thesis in 1961 Levelt gave a beautiful explicit proof of rigidity of monodromy groups of irreducible hypergeometric monodromy operators (see [1, §1.2]).

- (i) Check that an irreducible hypergeometric differential equation satisfies Katz' criterion of rigidity: **Theorem**(Nick Katz, see [1, §4]) Let $M_1, \ldots, M_r \in GL_n(\mathbb{C})$ be an irreducible tuple satisfying the
 - relation $M_1 \cdot \ldots \cdot M_r = I$. Denote $\delta_i = \operatorname{codim}_{\mathbb{C}} \{A \in M_n(\mathbb{C}) : AM_i = M_i A\}$. Then
 - (i) $\delta_1 + \ldots + \delta_r \ge 2(n^2 1),$
 - (ii) the tuple is rigid if and only if $\delta_1 + \ldots + \delta_r = 2(n^2 1)$.

To apply this to a Fuchsian differential equation one takes r to be the number of its singular points in $\mathbb{P}^1(\mathbb{C})$ and M_1, \ldots, M_r to be monodromy transformations around simple loops around this points.

(ii) Suppose that $\alpha_i, \beta_j \in \mathbb{Q}$ and $\alpha_i - \beta_j \notin \mathbb{Z}$ for all i, j. Then the hypergeometric operator L satisfies the conditions of Daniel's Theorem on existence of p-adic Frobenius structure. Compute the order of this Frobenius structure and the set of primes for which it exists using the recipe given in the lecture.

p-adic analytic continuation

Let us consider the hypergeometric series

$$\mathfrak{f}(t) = {}_2F_1(1/2, 1/2, 1; t) = \sum_{n \ge 0} \frac{(1/2)_n^2}{n!^2} t^n.$$

Dwork has shown in his "*p*-adic cycles" paper that, for all p > 2, the quotient $f(t)/f(t^p)$ belongs to E_p . More precisely, he showed that for all p > 2 and $s \ge 1$

$$\frac{\mathfrak{f}(t)}{\mathfrak{f}(t^p)} = \frac{\mathfrak{f}_s(t)}{\mathfrak{f}_{s-1}(t^p)} \mod p^s \quad \text{with} \quad \mathfrak{f}_s(t) = \sum_{n=0}^{p^s-1} \frac{(1/2)_n^2}{n!^2} t^n.$$

- (i) Show that the *p*-adic radius of convergence of $f(t)/f(t^p)$ is 1 for any p > 2.
- (ii) Consider the region

$$\mathcal{D} = \{ y \in \mathbb{Z}_p : |\mathfrak{f}_1(y)|_p = 1 \}$$

and check the following facts:

- (a) $\{y \in \mathbb{Z}_p : |y| < 1\} \subset \mathcal{D}$, and if $y \in \mathcal{D}$ then $y^p \in \mathcal{D}$;
- (b) for every $s \ge 0$ one has $|\mathfrak{f}_s(y)|_p = 1$ when $y \in \mathcal{D}$;
- (c) the sequence of rational functions $\mathfrak{f}_s(y)/\mathfrak{f}_{s-1}(y^p)$ converges uniformly in \mathcal{D} , and if we denote the limiting analytic function by $\omega(y) = \lim_{s \to \infty} \mathfrak{f}_s(y)/\mathfrak{f}_{s-1}(y^p)$ then for all $s \ge 1$

$$\sup_{y \in \mathcal{D}} \left| \omega(y) - \frac{\mathfrak{f}_s(y)}{\mathfrak{f}_{s-1}(y^p)} \right| \le \frac{1}{p^s};$$

(d) $\mathfrak{f}(t)/\mathfrak{f}(t^p)$ is the restriction of $\omega(t)$ to $\{y \in \mathbb{Z}_p : |y|_p < 1\}$.

Remark: The above procedure of analytic continuation allows to evaluate $\omega(y)$ at points $y \in \mathbb{Z}_p^{\times}$ such that $|\mathfrak{f}(y)|_p = 1$. Dwork also noted that the value $\omega(y_0)$ at a Teichmuller units $y_0 \in \mathbb{Z}_p^{\times}$, $y_0^{p-1} = 1$ is equal to the *p*-adic unit root of the elliptic curve $y^2 = x(x-1)(x-\overline{y}_0)$ where \overline{y}_0 is the reduction of y_0 modulo *p*. The condition $|f_1(y_0)|_p = 1$ chooses the ordinary elliptic curves in the Legendre family. A vaste generalisation of the above Dwork's congruences along with the evaluation of the respective *p*-adic analytic element is given in "Dwork crystals II" by Beukers-Vlasenko (see Theorem 3.2 and Remark 4.5).

(iii) Argue that the sequence of rational functions $f_s(t)/f_{s-1}(t^p)$ converges in the Gauss norm, and hence $\omega(t) \in E_p$

p-adic Frobenius structure for differential equations of rank 1

(i) Prove that, for any p > 2, the differential operator

$$\frac{d}{dt} - \frac{\mathfrak{f}'(t)}{\mathfrak{f}(t)}$$

has a p-adic Frobenius structure of period 1. Here f is the hypergeometric function considered in the previous set of exercises.

(ii) Let L = d/dt - a(t) be a differential operator with $a(t) \in \mathbb{Q}(t)$. Prove that if L has a p-adic Frobenius structure for almost all primes p then a(t) = f'(t)/f(t) with $f(t) \in \mathbb{Q}[[t]]$ algebraic over $\mathbb{Q}(t)$. Is the converse true?

Hint: Use the fact that the Grothendieck-Katz *p*-curvature conjecture holds for operators of rank 1.

- (iii) Prove that the differential equation d/dt 1 does not have a p-adic Frobenius structure for any p.
- (iv) Let π_p be in $\overline{\mathbb{Q}}$ such that $\pi_p^{p-1} = -p$. Prove that $d/dt \pi_p$ has a *p*-adic Frobenius structure. **Remark:** A. Pulita in his work *Frobenius structure for rank one p-adic differential equations* gives a characterization of the differential operators of rank 1 having a *p*-adic Frobenius structure for given *p*.

References

 F. Beukers, Hypergeometric functions of one variable, notes from MRI spring school held in Groningen in 1999 https://webspace.science.uu.nl/~beuke106/springschool99.pdf

p-adic approach to differential equations

Problem set 2

Sharif and Woodcock [1] proved that

$$\mathfrak{f}_r(t) = \sum_{n \ge 0} \binom{2n}{n}^r t^n$$

is transcendental over $\mathbb{Q}(t)$ for r > 1. In fact, they prove that for r > 1 the sequence $\{deg(\mathfrak{f}_{r|p})\}_{p\in\mathcal{P}}$ is not bounded and thus, $\mathfrak{f}_r(t)$ transcendental. The fact that \mathfrak{f}_r is *p*-Lucas for all p > 2 is crucial in their argument for proving that such a sequence is not bounded. (See exercise 2 in Julien's sheet)

The goal of this problem session is to prove the transcendence of power series that are not p-Lucas for any p. For every $r \ge 1$, we consider the hypergeometric series

$$\mathfrak{g}_r(t) = \sum_{n \ge 0} \frac{-1}{2n-1} \binom{2n}{n}^r t^n \in 1 + t\mathbb{Z}[[t]].$$

(i) Prove that $\sum_{n>0} a_n t^n \in 1 + t\mathbb{Z}[[t]]$ is *p*-Lucas if and only if, for all $m \ge 0$ and all $s \in \{0, \dots, p-1\}$,

$$a_{mp+r} = a_m a_r \bmod p.$$

- (ii) Prove that, for all $r \ge 1$, $\mathfrak{g}_r(t)$ is not p-Lucas for any p > 2.
- (iii) Prove that, for all p > 2, $\mathfrak{g}_r(t) = A_p(z)\mathfrak{f}_r(t)^p$, where $A_p(t) \in \mathbb{F}_p[t]$ has degree less than p.
- (iv) Prove that, for all p > 2, $deg(\mathfrak{g}_{r|p}) = deg(\mathfrak{f}_{r|p})$.
- (v) Conclude that $\mathfrak{g}_r(t)$ is transcendental over $\mathbb{Q}(t)$ for r > 1.

References

 H. SHARIF AND C. F. WOODCOCK On the transcendence of certain series, J. Algebra 121 (1989), 364–369.