
p-adic approach to differential equations

Problem set 1

Amice ring

For every prime number p, the Amice ring is defined as follows

Ap =

{∑
n∈Z

ant
n : an ∈ Qp, lim

n→−∞
|an|p = 0 and sup

n∈Z
|an|p < ∞

}
.

For every f =
∑

n∈Z ant
n, we set

|f |G = sup
n∈Z

|an|p.

(i) Prove that | |G is a norm. This norm is called the Gauss norm.

(ii) Prove that Ap is complete with respect to the Gauss norm.

(iii) Prove that Q(t) ⊂ Ap and show that ∣∣∣∣∣
∑

i ait
i∑

j bjt
j

∣∣∣∣∣
G

=
maxi |ai|p
maxj |bj |p

.

Conclude that Ep ⊂ Ap, where Ep is the p-adic closure of Q(t) called the field of p-adic analytic
elements.

(iv) An element of f =
∑

n∈Z ant
n ∈ Ap is invertible if and only if there is n0 ∈ Z such that |f |G = |an0

|.

(v) If f =
∑

n≥0 anz
n ∈ Ap has radius of convergence greater than 1 then f ∈ Ep.

Hypergeometric Frobenius structures

A generalized hypergeometric differential operator of order n ≥ 1 is given by

L = (θ + β1 − 1)(θ + β2 − 1) . . . (θ + βn − 1)− t(θ − α1) . . . (θ − αn), θ = t
d

dt

with some complex numbers α1, . . . , αn, β1, . . . , βn. This is a Fuchsian operator with singularities at 0, 1,∞.
The local exponents read

1− β1, . . . , 1− βn at t = 0,

α1, . . . , αn at t = ∞,

1, 2, . . . , n− 1,−1 +

n∑
i=1

(βi − αi) at t = 1.

The monodromy representation of L is known to be irreducible if and only if αi − βj /∈ Z for all i, j.
In his thesis in 1961 Levelt gave a beautiful explicit proof of rigidity of monodromy groups of irreducible
hypergeometric monodromy operators (see [1, §1.2]).
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(i) Check that an irreducible hypergeometric differential equation satisfies Katz’ criterion of rigidity:

Theorem(Nick Katz, see [1, §4]) Let M1, . . . ,Mr ∈ GLn(C) be an irreducible tuple satisfying the
relation M1 · . . . ·Mr = I. Denote δi = codimC{A ∈ Mn(C) : AMi = MiA}. Then

(i) δ1 + . . .+ δr ≥ 2(n2 − 1),

(ii) the tuple is rigid if and only if δ1 + . . .+ δr = 2(n2 − 1).

To apply this to a Fuchsian differential equation one takes r to be the number of its singular points in
P1(C) and M1, . . . ,Mr to be monodromy transformations around simple loops around this points.

(ii) Suppose that αi, βj ∈ Q and αi − βj /∈ Z for all i, j. Then the hypergeometric operator L satisfies the
conditions of Daniel’s Theorem on existence of p-adic Frobenius structure. Compute the order of this
Frobenius structure and the set of primes for which it exists using the recipe given in the lecture.

p-adic analytic continuation

Let us consider the hypergeometric series

f(t) = 2F1(1/2, 1/2, 1; t) =
∑
n≥0

(1/2)2n
n!2

tn.

Dwork has shown in his ”p-adic cycles” paper that, for all p > 2, the quotient f(t)/f(tp) belongs to Ep. More
precisely, he showed that for all p > 2 and s ≥ 1

f(t)

f(tp)
=

fs(t)

fs−1(tp)
mod ps with fs(t) =

ps−1∑
n=0

(1/2)2n
n!2

tn.

(i) Show that the p-adic radius of convergence of f(t)/f(tp) is 1 for any p > 2.

(ii) Consider the region
D = {y ∈ Zp : |f1(y)|p = 1}

and check the following facts:

(a) {y ∈ Zp : |y| < 1} ⊂ D, and if y ∈ D then yp ∈ D;

(b) for every s ≥ 0 one has |fs(y)|p = 1 when y ∈ D;

(c) the sequence of rational functions fs(y)/fs−1(y
p) converges uniformly in D, and if we denote the

limiting analytic function by ω(y) = lims→∞ fs(y)/fs−1(y
p) then for all s ≥ 1

sup
y∈D

∣∣∣∣ω(y)− fs(y)

fs−1(yp)

∣∣∣∣ ≤ 1

ps
;

(d) f(t)/f(tp) is the restriction of ω(t) to {y ∈ Zp : |y|p < 1}.

Remark: The above procedure of analytic continuation allows to evaluate ω(y) at points y ∈ Z×
p

such that |f(y)|p = 1. Dwork also noted that the value ω(y0) at a Teichmuller units y0 ∈ Z×
p , y

p−1
0 = 1

is equal to the p-adic unit root of the elliptic curve y2 = x(x− 1)(x− y0) where y0 is the reduction of
y0 modulo p. The condition |f1(y0)|p = 1 chooses the ordinary elliptic curves in the Legendre family.
A vaste generalisation of the above Dwork’s congruences along with the evaluation of the respective
p-adic analytic element is given in ”Dwork crystals II” by Beukers-Vlasenko (see Theorem 3.2 and
Remark 4.5).

(iii) Argue that the sequence of rational functions fs(t)/fs−1(t
p) converges in the Gauss norm, and hence

ω(t) ∈ Ep
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p-adic Frobenius structure for differential equations of rank 1

(i) Prove that, for any p > 2, the differential operator

d

dt
− f′(t)

f(t)

has a p-adic Frobenius structure of period 1. Here f is the hypergeometric function considered in the
previous set of exercises.

(ii) Let L = d/dt− a(t) be a differential operator with a(t) ∈ Q(t). Prove that if L has a p-adic Frobenius
structure for almost all primes p then a(t) = f ′(t)/f(t) with f(t) ∈ Q[[t]] algebraic over Q(t). Is the
converse true?

Hint: Use the fact that the Grothendieck-Katz p-curvature conjecture holds for operators of rank 1.

(iii) Prove that the differential equation d/dt− 1 does not have a p-adic Frobenius structure for any p.

(iv) Let πp be in Q such that πp−1
p = −p. Prove that d/dt− πp has a p-adic Frobenius structure.

Remark: A. Pulita in his work Frobenius structure for rank one p-adic differential equations gives a
characterization of the differential operators of rank 1 having a p-adic Frobenius structure for given p.
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p-adic approach to differential equations

Problem set 2

Sharif and Woodcock [1] proved that

fr(t) =
∑
n≥0

(
2n

n

)r

tn

is transcendental over Q(t) for r > 1. In fact, they prove that for r > 1 the sequence {deg(fr|p)}p∈P is not
bounded and thus, fr(t) transcendental. The fact that fr is p-Lucas for all p > 2 is crucial in their argument
for proving that such a sequence is not bounded. (See exercise 2 in Julien’s sheet)

The goal of this problem session is to prove the transcendence of power series that are not p-Lucas for
any p. For every r ≥ 1, we consider the hypergeometric series

gr(t) =
∑
n≥0

−1
2n− 1

(
2n

n

)r

tn ∈ 1 + tZ[[t]].

(i) Prove that
∑

n≥0 ant
n ∈ 1 + tZ[[t]] is p-Lucas if and only if, for all m ≥ 0 and all s ∈ {0, . . . , p− 1},

amp+r = amar mod p.

(ii) Prove that, for all r ≥ 1, gr(t) is not p-Lucas for any p > 2.

(iii) Prove that, for all p > 2, gr(t) = Ap(z)fr(t)
p, where Ap(t) ∈ Fp[t] has degree less than p.

(iv) Prove that, for all p > 2, deg(gr|p) = deg(fr|p).

(v) Conclude that gr(t) is transcendental over Q(t) for r > 1.
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